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Since the days of Medawar, the goal of therapeutic tolerogenesis has been a ‘‘Holy Grail” for immunolo-
gists. While knowledge of cellular and molecular mechanisms of this process has been increasing at an
exponential rate, clinical progress has been minimal. To provide a mechanistic background of tolerogen-
esis, we overview common processes in the naturally occurring examples of: pregnancy, cancer, oral tol-
erance and anterior chamber associated immune deviation. The case is made that an easily accessible
byproduct of plastic surgery, the adipose stromal vascular fraction, contains elements directly capable
of promoting tolerogenesis such as T regulatory cells and inhibitory macrophages. The high content of
mesenchymal and hematopoietic stem cells from this source provides the possibility of trophic/regener-
ative potential, which would augment tolerogenic processes by decreasing ongoing inflammation. We
discuss the application of this autologous cell source in the context of rheumatoid arthritis, concluding
with some practical examples of its applications.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The possibility of selectively inducing immunological non-
responsiveness to specific antigens or tissues, while leaving other
immune functions intact, would conceptually solve the problems
of autoimmunity and transplant rejection. However, to date, while
substantial progress has been made in our understanding of mech-
anisms of tolerance in animal models and limited clinical situa-
tions, translation to therapeutically viable solutions has not
occurred. One possible explanation is the current regulatory and
commercial pressures which maintain the paradigm of minimalist-
ic dissection and interventions in specific biological processes
which may yield some limited clinical benefits in isolation, while
ignoring potent synergies that may be obtained by combination
therapies based on a ‘‘systems” approach. While this paper is not
ll rights reserved.
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a position paper on translational medicine, the current limitations
of today’s framework for development of therapeutics in the arena
of immunotherapies may impose restrictions on contemplation of
strategies that have a realistic possibility of practical implementa-
tion today.

In the current paper, we use a somewhat unorthodox approach
by attempting to globally synthesize common elements associated
with immunological tolerance in several naturally occurring situa-
tions. The description of these common elements of tolerogenesis
will serve as a background for our proposal of a novel, feasible,
therapeutic procedure. Specifically, the procedure we will be
describing involves extracting autologous adipose mononuclear
cells, termed stromal vascular fraction (SVF), and subsequent
systemic re-administration. This has been used by us in over 160
patients with multiple sclerosis as part of a medical procedure.
No adverse effects have been reported, and anecdotal reports of
benefit have been published [1]. Additionally, autologous SVF
administration has been used commercially in over 3000 race
horses for post-injury acceleration of healing [2], with published
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efficacy data in a double-blind canine osteoarthritis trial [3]. Cur-
rently autologous SVF is in clinical trials for post infarct remodeling
[4], ischemic heart failure [5], type I diabetes [6], and liver failure
[7]. Previously the therapeutic rationale for this approach was
based on high content of multipotent MSC in the SVF [8]. However
in light of a recent publication demonstrating the large number
and potent regulatory function of Treg in adipose tissue [9], we
propose that alternative cell populations in this heterogeneous
mixture may not only be regenerative, but also promote tolerance.
By decreasing ongoing inflammation alone, a re-equilibration of
tolerogenic mechanisms may occur. Such an effect would hypo-
thetically be amplified by components in the SVF, as well as by
other therapeutic interventions that either failed, or performed
poorly, as a monotherapy. We will base our discussion on the con-
dition of rheumatoid arthritis as an autoimmune disease in which
tolerance induction is sought, as well as the potential of the pro-
posed approach to simultaneously induce tissue regeneration.
2. Four examples of immunological tolerance

The concept of ‘‘immunological tolerance” dates back to the
days of Medawar and observations that shared circulation during
fetal development leads to selective immunological non-respon-
siveness to genetically discordant fraternal party [10]. The word
‘‘tolerance” can mean numerous states and can be achieved by
numerous pathways. Tolerance in its functional sense requires lack
of immunological attack on the target antigen or tissue. There are
two general, non-mutually exclusive, means in which this occurs:
stimulation of Treg cells that actively suppress responses to the
specific antigen or clonally inactivating the T cells that are
responding to the specific antigen. However, in order to achieve
a therapeutic response in a disease condition it is not strictly nec-
essary to achieve ‘‘full tolerance” but in some situations immune
modulation may be sufficient. For example, inhibition of Th17 re-
sponses or deviation from Th17 to Th2 may be sufficient to elicit
a clinical effect. For the purposes of this discussion, we will use
the word ‘‘tolerance” to include immune deviation.

Tolerance naturally occurs in several situations such as
pregnancy, cancer, following oral ingestion of antigen, or adminis-
tration of antigen into the anterior chamber of the eye. In animal
studies, immune deviation in pregnancy was demonstrated by
observations of selective immunological non-responsiveness in
T cells recognizing fetally-expressed antigens [11]. Clinically, it is
believed that a substantial number of pregnancy failures in the first
trimester may be associated with immunological causes [12].
Immunological intervention such as allogeneic lymphocyte infu-
sions, which are believed to inhibit production of inflammatory
cytokines and increase Treg numbers [13,14], have been demon-
strated to inhibit spontaneous abortions in mice [15] and humans
[16]. As an interesting aside, third party lymphocyte administra-
tion has been demonstrated to inhibit clinical RA in a small pilot
trial [17]. In animal models of neoplasia, transgenic expression of
defined antigens on tumors appears to lead to selective inhibition
of systemic T cell responses to the specific antigens [18–20]. Clin-
ically, the ability of tumors to inhibit peripheral T cell activity has
been associated in numerous studies with poor prognosis [21–23].
Ingestion of antigen, including the putative RA autoantigen colla-
gen II [24], has been shown to induce inhibition of both T and B cell
responses in a specific manner [25,26]. Remission of disease in ani-
mal models of RA [27], multiple sclerosis [28], and type I diabetes
[29], has been reported by oral administration of autoantigens.
Anterior chamber associated immune deviation (ACAID) is a phe-
nomena in which local implantation of antigen results in a sys-
temic immune modulation towards the antigen. Commonly this
is demonstrated by antigen-specific suppression of DTH responses
after intra-chamber administration of antigen [30]. Induction of
ACAID has been used therapeutically in treatment of a mouse mod-
el of pulmonary inflammation: pretreatment with anterior cham-
ber antigen injection resulted in systemic protection from
pulmonary damage [31].

All of these situations of natural immune deviation have certain
common cellular processes: (a) specialized antigen presenting
cells; (b) induction of T cells with regulatory activity; and (c) devi-
ation of cytokine production and/or suppression of effector cell
activity.
3. Dendritic cells as initiators of tolerance

Dendritic cells (DC) may be conceptualized in a very general
sense as dual purpose cells: In conditions of homeostasis, DC reside
in an immature state and promote tolerance, whereas when ex-
posed to injury or damage signals they mature and induce T cell
activation. This general paradigm can be observed in the four con-
ditions of tolerogenesis that were previously discussed.

In pregnancy circulating factors such as TGF-b family members
[32] and hCG [33], have been reported to inhibit DC maturation
and function [34,35]. DC with tolerogenic properties are found at
the maternal–fetal interface and express high concentrations of
the immune suppressive enzyme indolamine-2,3-deoxygenase
(IDO). Through local tryptophan depletion, as well as production
of immune suppressive metabolites, cells expressing IDO have
been demonstrated to induce T cell apoptosis, and more recently
to elicit generation of T regulatory (Treg) cells [36,37]. The critical
role of this enzyme in pregnancy can be seen in studies where IDO
inhibition results in immunologically mediated spontaneous abor-
tion [38].

Inhibition of DC maturation and/or reprogramming by the tu-
mor microenvironment has been well documented in numerous
clinical system and animal experiments. DC isolated from tumor
draining lymph nodes in melanoma [39,40], ovarian [41], breast
[42], and lung cancer [43] have been characterized as having an
immature/plasmacytoid phenotype, suppressing T cell activating
ability and possessing elevated levels of IDO. Manipulation of DC
by silencing the gene IDO using siRNA has been demonstrated by
us to evoke productive T cell immunity towards melanoma [44].
Secretion of VEGF by tumor cells is one of several proposed mech-
anisms for increased immature DC in tumor patients [45]. Admin-
istration of the anti-VEGFR antibody bevacizumab in patients with
a variety of tumors was demonstrated to increase DC maturation
and restore T cell activating activity [46].

In the situation of oral tolerance, a population of T cell suppres-
sive CD11c+, CD11b+ DCs and CD11c+, CD8a+ DCs has been re-
ported in the Peyer’s patches [47]. These cells have been
described to express high levels of IDO and possess ability to acti-
vate Treg cells [48]. Interestingly, administration of flt-3L, which
expands DC systemically has been demonstrated to augment ef-
fects of oral tolerance induction [49]. A more recent report de-
scribed IL-10/IL-27 expressing CD11b� DC as inducers of oral
tolerance in a transgenic system. The relationship between these
cells and IDO expressing DC remains to be elucidated [50].

Unique antigen presenting cells bearing the macrophage mar-
ker F4/80 reside in the anterior chamber of the eye, whose migra-
tion to the spleen and activation of regulatory cells of the NKT
lineage is essential for ACAID to occur [51]. The importance of this
antigen presenting cell in ACAID can be seen from studies in which
similar concentrations of TGF-b as those found in the anterior
chamber are added exogenously to naïve monocytes. The resulting
cell population, which phenotypically resembles ocular macro-
phages have the potential to induce immune modulation in vivo
through induction of Treg cells [52].



T.E. Ichim et al. / Cellular Immunology 264 (2010) 7–17 9
Thus it appears that the process of tolerogenesis is associated
with a critical function of the DC/antigen presenting cell. Given this
knowledge artificial manipulation of DC for induction of tolerance
has been performed in several settings. For example, tolerogenic
modifications of DC performed by our group have included expo-
sure of the DC to small molecule immune suppressants [53–55],
gene transfection with tolerogenic genes [56,57] and gene silenc-
ing of immune activatory genes [58–61].
4. T regulatory cells as effectors of tolerance

The concept of T cells suppressing other T cells as a mechanism
of tolerance was accepted for decades. Initial studies in the 1970s
focused on ‘‘T suppressor” cells, which were CD8 positive cells with
the ability to restrain autoimmunity, support transplant tolerance,
and were elevated in cancer. The existence of these cells came into
doubt when molecular studies demonstrated fundamental pro-
teins ascribed to these cells could not be found [62]. In the 1990s
the focus started to shift to cells expressing the CD4+, CD25+ phe-
notype. Hall et al. were the first to describe a cell population with
this phenotype capable of transferring tolerance in a rat model of
transplantation [63,64]. Subsequently, Sakaguchi’s group, which
are commonly given credit for identification of the Treg cell, con-
firmed the importance of the CD4+ CD25+ phenotype based on
experiments demonstrating neonatal thymectomy causes loss of
Treg, which results in systemic autoimmunity, which is prevented
by transfer of the cell population [65]. Since those early days, the
field of Treg has blossomed, with numerous molecular details of
their function having been elucidated. Interestingly, observations
made with the ill-defined T suppressor cells in the early 1980s,
such as ability to suppress antigen presenting cell function [66],
are now being rediscovered with Treg cells [67].

In the four conditions of natural tolerogenesis described above,
the DC causes generation of regulatory cells capable of inhibiting
effector T cells directly, or indirectly through inhibiting other DC
from maturing [68]. In pregnancy Treg with the CD4+ CD25+
FoxP3+ phenotype have been found in mouse and human fetal–
placental interface [69]. Suggesting a possible role in successful
pregnancy. Immunologically mediated abortions have been no-
ticed in patients having reduced number of FoxP3 positive cells
[70,71]. In animal models of recurrent immunologically mediated
abortion, administration of CTLA4 has been shown to prevent preg-
nancy loss through augmenting activity and number of FoxP3 po-
sitive Treg [72]. Infiltration of tumors by Treg cells has been
correlated with poor prognosis in numerous clinical tumors includ-
ing gastric cancer [73], lung cancer [74], colon cancer [75], and
breast cancer [76]. Conversely, reduction of Treg through antibody
depletion has demonstrated derepression of immunity in animal
models [77] and limited patient experiences [78]. In oral tolerance,
conventional FoxP3 expressing Treg [48], as well as TGF-b secret-
ing ‘‘Th3” cells have been defined [79]. Although heterogeneity of
effector function may be explained by different model systems
used, at least one report suggests involvement of FoxP3 in Th3 cell
function, indicating that suppressor mechanisms may not be
mutually exclusive [80]. Mechanisms of suppression in ACAID in-
volve a type of regulatory natural killer T (NKT) cell which upon
activation secretes urokinase-type plasminogen activator locally.
This causes activation of latent TGF-b and suppressor of effector
function [81].

Numerous mechanisms of Treg inhibition of immune effector
function have been described. Originally, suppression of T cell acti-
vation by membrane-bound TGF-b was proposed [82]. Subsequent
studies have demonstrated Treg inhibit DC maturation, thus pro-
viding an indirect mechanism of effector suppression. Treg-medi-
ated suppression of NK [83] and macrophage function [84] has
been reported. Perhaps one of the most intriguing mechanisms of
suppression is direct lysis of effector cells through a granzyme B/
perforin-dependent mechanism [85].
5. Tissue injury as enemy of tolerogenesis

The balance between the host’s need for induction of immunity
versus tolerance in response to antigen is dictated by integration of
several factors which are globally associated with the concept of
‘‘danger”. Early experiments demonstrated that offspring of mice
with transgenic T cell receptors towards an autoantigen crossed
with mice expressing the antigen do not develop autoimmunity
despite large numbers of circulating autoreactive cells. However,
when a ‘‘danger signal” was administered, self-tolerance would
be lost and autoimmunity ensued [86,87]. Essentially, the concept
was that despite existence of autoreactive T cells, the immature DC
in the basal state led to generation of Treg cells, as well as anergy,
due to lack of costimulation and expression of co-inhibitory
receptors. The identification of toll like receptors (TLRs) and subse-
quently other pattern recognition receptors, provided a molecular
basis for the concept of ‘‘danger” [88]. Essentially innate reactions,
primarily mediated by the DC controlled whether the adaptive re-
sponse would mature into a productive immunity or ignorance of
the antigen.

Non-TLR sensors of ‘‘danger” include retinoid acid inducible
gene (RIG)-I-like receptors (RLRs) such as retinoid acid inducible
gene (RIG)-I, melanoma differentiation antigen (MDA)5, and
DNA-dependent activator of IFN-regulatory factors (DAI), and
nucleotide-binding and oligomerization domain (NOD)-like recep-
tors (NLRs), which include NOD1, NOD2, NLRP3 and absent in mel-
anoma (AIM)2 [89]. RIG-1 and MDA5 are intracellular receptors
that recognize single-stranded RNA bearing 50-triphosphates as
found in some viruses [90], as well as free DNA [91]. DAI is acti-
vated by double stranded DNA, originally being identified as a
cytosolic receptor capable of inducing interferon responses in cells
lacking TLR-9 [92]. Generally RLRs are associated with interferon
induction in response to nucleic acids, whereas NLRs recognize a
wider set of pathogen associated molecular patterns (PAMP) and
damage associated molecular patterns (DAMP) [89]. NLRs are sim-
ilar to RLRs in that they also are cytosolic, however one of their
effector mechanisms is production of IL-1 through activation of
the caspase-1/inflammasome pathway.

In the conditions of natural tolerogenesis described above,
experimental data have demonstrated breaking of tolerance
through injury or various inflammatory signals. In pregnancy it is
known that various TLR activators are associated with complica-
tions and fetal loss [93]. Induction of anticancer immunity has
been reported with DC activators such as TLR-9 agonists, which
are currently in clinical trials [94,95]. Blockade of oral tolerance
and actual conversion to immunity has been demonstrated with
agents that induce DC maturation [96,97]. Breaking of ocular toler-
ance has been observed in experimental autoimmune uveoretinitis
to be mediated by the TLR-4 agonist HMGB1 [98]. Furthermore,
experimental ocular injury has been shown to inhibit ACAID
through suppression of TGF-b, however molecular mediators re-
main unclear [99].

In conditions of autoimmunity, such as RA, there is a local
inflammatory response occurring, which has extra-articular impli-
cations. For example, patients with RA exhibit classical symptoms
of general inflammation such as elevated ESR, C-reactive protein,
and inflammatory cytokines such as IL-1, IL-6, and TNF-a [100].
The effects of this systemic inflammation may be profound. A par-
adoxical T cell hyporesponsiveness has been observed in RA pa-
tients, which is believed to be mediated by oxidative stress
released from inflamed sites [101]. This constant inflammatory
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damage potentially leads to self amplification of the disease. For
example, it is known that inflamed synovium is associated with in-
creased expression of TLR-4 and 2, and that in absence of TLR-4,
CIA development is inhibited [102]. Several TLR agonists have been
found to be constitutively expressed in the synovium of RA pa-
tients. HSP22 is a heat shock protein that was shown to activate
DC in a TLR-4 dependent manner and correlated with disease
[103]. Another heat shock protein, gp96 was found in synovial fluid
of RA patients and induced macrophage activation through TLR-2
[104]. Free RNA released by injured cells in the synovium as also
been related to induction of inflammation through a TLR-3
dependent pathway [105]. It is thus likely that by maintaining a
persistent inflammatory environment with numerous endogenous
TLR-ligands available, it is difficult to induce antigen-specific sup-
pression of immunity.

Experimental evidence exists for the role of tissue injury block-
ing tolerogenesis. In addition to DC maturation, which has been
demonstrated to occur in many situations by injury signal-gener-
ated TLR agonists, these signals also block Treg generation. For
example, DC generated IL-6 make in response to TLR-4 activations
renders T cells non-responsive to suppressive effects of Treg cells
[106]. TNF-a, which is elevated in RA patients and is produced,
in part by macrophage activation, has been demonstrated to di-
rectly inhibit Treg activity in vitro and in vivo [107]. Notably, RA
patients treated with Remicade have been demonstrated to recover
deficiencies in Treg activity.

The current notion is that tolerance requires antigen presenting
cells to be in an unprimed, immature state, and that ongoing
inflammatory conditions inherently stimulate maturation of DC.
Therefore it would be logical to aim to first reduce inflammation
and ‘‘danger” signals, before utilization of tolerance promoting
strategies. The ability of the immune system to actively ‘‘self toler-
ize” when a foreign antigen is present in absence of danger can be
seen in studies where allogeneic pancreatic islets are depleted of
antigen presenting cell content by high concentrations of oxygen.
This results in long-term survival and generation of cells with reg-
ulatory activity capable of transferring tolerance [108]. Thus we
are proposing that administration of regenerative cells may on
the one hand reduce ‘‘danger” but on the other hand may have di-
rect tolerance promoting effects.
6. Stromal vascular fraction: MSC, HSC, and Tregs

The stromal vascular fraction (SVF) is comprised of a mixed
population of pericytes, EPCs, MSCs, hematopoietic stem cells
[109], Treg [9], and alternatively activated monocytes. This mix-
ture conceptually may be a useful source of cells with both im-
mune modulatory and regenerative properties. The thesis of the
current paper is that SVF may be a useful adjuvant for induction
of tolerance. Accordingly we will describe some of the constituent
cells of relevance.
6.1. MSC

SVF is believed to contain a higher population of MSC as com-
pared to other sources, allowing for obtaining regenerative effects
without need for ex vivo expansion. MSC are a population of im-
mune modulatory adherent cells capable of differentiating into
bone, cartilage, and adipose tissue. These cells have been isolated
from numerous tissues including adipose [110], heart [111], Whar-
ton’s Jelly [112], dental pulp [113], peripheral blood [114], cord
blood [115], and more recently menstrual blood [116–118]. In
addition to their tissue regenerative/growth factor secreting activ-
ities, these cells possess anti-inflammatory activities which appear
to be present regardless of tissue of origin [119,120]. Mechanisti-
cally, MSC appear to suppress inflammation through secretion of
anti-inflammatory mediators such as IL-10 [121], TGF-b [122], LIF
[123], soluble HLA-G [124] and IL-1 receptor antagonist [125].
Additionally, MSC express immune regulatory enzyme such as
cycloxygenase [126] and indolamine-2,3-deoxygenase [127] which
appear to synergize with ongoing tolerogenic processes.
Suppression of the autoimmune-associated cytokine IL-17 has
been reported by MSC [128]. Indirectly MSC appear to inhibit auto-
immunity through ability to induce generation of T regulatory cells
[129].

The in vivo anti-inflammatory effects of MSC may be witnessed
by success in treating animal models of immune-mediated/inflam-
matory pathologies such as multiple sclerosis [130], colitis [131],
graft versus host disease [132], rheumatoid arthritis [133], and
ischemia/reperfusion injury [134]. Clinically, MSC have demon-
strated ability to inhibit conditions such graft versus host (GVHD)
[135–140], systemic lupus erythematosis (SLE) [141], and end
stage liver disease [142]. Based on their ability to induce regener-
ation of injured tissue, combined with anti-inflammatory effects,
we believe the MSC population may be useful as an adjuvant to tol-
erogenic strategies in treatment of autoimmune conditions.

6.2. Hematopoietic stem cells

Numerous studies have demonstrated CD34 hematopoietic
stem cells (HSC) have therapeutic activity in animal models of di-
verse conditions such as stroke [143], myocardial infarction [144],
and liver failure [145], with clinical trials are currently ongoing for
these indications [146–148]. Mechanistically, the function of CD34
cells for non-hematopoietic conditions is the subject of discussion.
Previous thoughts that CD34 cells have transdifferentiation ability
to convert into damaged tissue have to some extent been chal-
lenged [149,150], with the current prevailing concept being that
trophic/paracrine activities may be more relevant. Indeed, basal
and induced expression of growth factors such as VEGF, HGF,
IGF-1, and FGF-2 have been described in conditioned media of iso-
lated CD34+ cells [151]. Additionally, CD34+ cells are known to be
angiogenic, as demonstrated by ability to induce functional collat-
eralization in hindlimb ischemia models and patients with critical
limb ischemia [152]. Since angiogenesis is a critical component of
tissue healing, this has also been proposed as a mechanism of ac-
tion [143].

In addition to regenerative activities, it has been shown that
CD34+ cells possess direct immune suppressive/tolerance inducing
ability. This was postulated based on studies demonstrating that
during bone marrow transplantation, ‘‘megadose” CD34 cells
would preferentially induce graft acceptance [153]. Investigation
into the mechanisms of this effect led to studies in which in vitro
mixed lymphocyte culture (MLR) assays were used to show CD34
cells are capable of inducing death in CD8 cells responding to allo-
antigen of the same origin as the CD34 cell. The effect does not oc-
cur against third party cells and is believed to be associated with
expression of MHC class I and class II antigens but not costimula-
tory molecules [154]. Additionally, a possible role for FasL in this
‘‘veto effect” has been proposed [155]. Indeed the association be-
tween high expression of HLA-DR and FasL suggests the possibility
of antigen presentation and concurrent T cell deletion by the FasL
[156]. Local production of TNF-a by CD34 cells has been described
as another possible mechanism of depletion of reactive T cells
[157]. TGF-b, one of the effector cytokines responsible for Treg sup-
pression of T cells [158], neutrophils [159], macrophages [160], and
dendritic cells, has been implicated as an autocrine factor released
by CD34 cells which maintains a G0 state [161–164]. The possibil-
ity of CD34 cells acting through a TGF-b dependent mechanism is
an area requiring future experimental investigation. In addition
to direct suppression, an interesting paper by Kared et al.
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demonstrated that hematopoietic progenitors, by expression of
Jagged, can induce generation of Treg cells, which are capable of
inhibiting autoimmune diabetes [165]. The recent finding that cir-
culating CD34 cells traffic through blood, lymph, and peripheral or-
gans, suggests that in addition to hematopoietic functions, CD34+
cells may play an ‘‘immunosurveillance” role in that upon activa-
tion by TLR agonists they differentiate into DC, whose maturity is
associated with presence of innate immune activation signals
[166].
6.3. Treg cells

Feuerer et al. [9] examined adipose tissue for content of Treg
cells based on functionality and expression of the CD4+, CD25+,
FoxP3+ phenotype. Increased numbers of these cells were observed
in adipose compared to other peripheral tissues. The authors made
a case for the role of Treg in controlling inflammation associated
with obesity. Interestingly, the adipose Treg’s appeared to have a
‘‘primed” phenotype, as witnessed by highly elevated IL-10 tran-
script and protein levels in adipose Treg.

The possibility of adipose-derived Treg cells having enhanced
in vivo expansion and functional activity may be conceptually sup-
ported by studies showing that adipose-derived cytokines such as
leptin and TNF-a inhibit Treg proliferation and activity in vivo
[107,167]. The local effects of these cytokines would conceptually,
be altered by liberating Treg from fat followed by systemic re-
administration. Administration of a large number of Treg cells with
augmented in vivo proliferative and functional potential may re-
sult in a reduction of the threshold needed to attain tolerance to
an ongoing immune response. Indeed interventions inducing an
antigen-nonspecific immune modulation have previously been
demonstrated to cause antigen-specific Tregs, and tolerance [168].

The rationale for administration of autologous SVF as a source of
immune modulation is also based on expression of high numbers
of alternatively activated macrophages, which has been discussed
by us in a previous report [1].
7. The problem of rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic inflammatory disorder
affecting approximately 0.5–1% of the global population [169],
characterized by immune-mediated synovial inflammation and
joint deterioration. In general, because of the critical role of
inflammation in the pathology of RA, patients have in the past been
started on NSAIDS, however more recent practice has been concur-
rent initiation of disease modifying antirheumatic drugs
(DMARDs). These agents are slow acting but have been demon-
strated to inhibit radiological progression of RA. Such agents typi-
cally include: (1) hydroxychloroquine, which acts in part as a toll
like receptor (TLR) 7/9 antagonist, thus decreasing innate immune
activation [170]; (2) leflunomide, an antimetabolite that inhibits
pyrimidine synthesis and protein tyrosine kinase activity [171],
which results in suppression of T cell responses [172], and has been
also demonstrated to inhibit dendritic cell (DC) activation [173];
(3) injectable gold compounds such as auranofin which directly
or through metabolites such as dicyanogold (i) have been demon-
strated to inhibit T cell and antigen presenting cell activation
[174,175], as well as cause Th2 deviation [176]; (4) sulfasalazine,
was used since 1950, acts primarily through inhibition of cycloxy-
genase and lipoxygenase [177]; and (5) methotrexate, an antifolate
that inhibits T cell activation and proliferation, that has been one of
the golden standards for RA [178]. Typically combinations of
DMARDs with glucocorticoids are used in clinical practice [179].

The TNF-a-targeting agents, Remicade, Enbrel, and Humira,
sometimes referred to as ‘‘biologic agents” are used primarily after
response to conventional DMARDs has failed [180]. Although
improvement in quality of life has occurred as a result of biological
DMARDs, substantial progress remains to be made. For example,
TNF-a blockers have been associated with reactivation of infec-
tious disease, autoantibody formation and the possibility of in-
creased lymphoma risk [181,182]. Thus to date, one of the major
limitations to RA therapy has been lack of ability to specifically in-
hibit autoreactive responses while allowing other immune compo-
nents to remain intact.
7.1. Tolerance induction in RA

The autoimmune nature of RA suggests the possibility of specif-
ically inhibiting the pathological response through ‘‘reprogram-
ming” of immune effectors. However, in order to evoke antigen-
specific immune modulation, it is necessary to have knowledge
of autoantigens that are present in a majority of the population
and contribute to disease. Collagen II is an extracellular matrix
component found primarily in the synovial tissue that is usually
sequestered from immunological attack. Induction of a RA-like dis-
ease has been reported in inbred strains following immunization of
collagen II in the presence of adjuvant [183]. Autoimmunity was
not induced by collagen I or III, nor by denatured collagen II pro-
tein. Supporting a causative immunopathological effect of collagen
I–I specific T cells were experiments undertaken in which the RA-
like disease could be transferred to naïve recipients by administra-
tion of lymph node cells [184]. Subsequent work cloning T cell
lines from synovial membranes of patients with RA demonstrated
existence of collagen II-specific cells that persisted for a period of
3 years in vivo [185]. Subsequent PCR-studies of T cell receptor
beta chains confirmed the oligoclonal expansion of collagen II-
reactive cells in patients [186]. In 1993 Weiner’s group reported
a double-blind, placebo-controlled trial of 60 patients with ad-
vanced RA treated by oral administration of chicken collagen II
for a period of 3 months. Responses in terms of decreased number
of swollen joints were observed in the treated population but not
placebo controls. Of the treated patients four presented with com-
plete remission of disease. No treatment-associated adverse effects
were noted [187]. Unfortunately, Phase III trials using oral toler-
ance in RA have not met primary efficacy endpoints [188].

Given the general failure of oral tolerance in RA, more specific
approaches have involved stimulation of tolerogenic responses
using ex vivo manipulated DC. Dendritic cells (DC) under physiolog-
ical conditions promote tolerance, and when exposed to injury/
damage signals mature and induce T cell activation. By ex vivo
manipulating antigen pulsed/donor specific DC, we have previously
been able to induce antigen-specific suppression of immunity and
generation of T regulatory (Treg) cells. Tolerogenic modifications
of DC performed by our group have included exposure of the DC
to small molecule immune suppressants [53–55], gene transfection
with tolerogenic genes [56,57] and gene silencing of immune acti-
vatory genes [58–61]. In our previous work, we have demonstrated
ability to prevent CIA induction by pulsing DC with collagen II (CII)
and suppressing DC maturation with chemical or genetic means.
Limitations of these data, however, have been the lack of robust
inhibition of inflammatory responses when administration of
manipulated DC was performed at various time points subsequent
to disease onset. The general failure of antigen-specific approaches,
both in oral tolerance, as well as DC-based approaches may be the
result of underlying inflammatory reactions.
8. MSC as tolerizers

We previously discussed the possibility of using SVF as a
source of regenerative and immune modulatory cells. While hav-
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ing touched on the MSC component briefly, here we will discuss
some unique aspects of this population relevant to tolerance
inducing regiments. Specifically, the possibility of using systemi-
cally administered mesenchymal stem cells (MSC) as a cellular
therapy for RA has several conceptual advantages that address
the previously mentioned drawbacks of current approaches.
One such advantage is that the MSC may be viewed as a ‘‘smart”
immune modulator. In contrast to current therapies, which glob-
ally cause immune suppression, production of anti-inflammatory
factors by MSC appears to be dependent on their environment,
with upregulation of factors such as TGF-b, HLA-G, IL-10, and
neuropilin-A ligands galectin-1 and Semaphorin-3A in response
to immune/inflammatory stimuli but little in the basal state
[122,123,189–191]. Additionally, systemically administered MSC
possess ability to selectively home to injured/hypoxic areas by
recognition of signals such as HMGB1 or CXCR1, respectively
[192–195]. The ability to home to injury, combined with selec-
tive induction of immune modulation only in response to inflam-
matory/danger signals suggests the possibility that systemically
administered MSC do not cause global immune suppression. This
is supported by clinical studies using MSC for other inflammatory
conditions, which to date, have not reported immune suppres-
sion associated adverse effects [196–198]. Another important as-
pect of MSC therapy is their ability to regenerate injured tissue
through direct differentiation into articular tissue [199], as well
as ability to secret growth factors capable of augmenting endog-
enous regenerative processes [200].

Physiologically, the role of MSC in RA is a matter of debate.
Nakagawa et al. used radiolabeling of bone marrow cells to dem-
onstrate migration of bone marrow stromal cells into synovium
of rats suffering from CIA. While inference was made to contribu-
tion of the MSC to synovial proliferation, a causal relationship
was not demonstrated [201]. Subsequently, it was reported that
MSC differentiate into nurse-like cells that promote adhesion of
lymphocytes to the synovium [202]. Indeed, in patients with
RA, but not healthy controls, bone marrow MSC-generating
capacity is markedly reduced [203], whether this is due to sys-
temic TNF-a suppression of bone marrow [204], or exhaustion
of MSC precursors by heightened demand is not known. How-
ever, there are suggestions of the latter based on observations
of shorter telomeres in MSC derived from RA patients [203].
The concept of MSC contributing to pathology was demonstrated
in the CIA model by Djouad et al. who reported administration of
MSC resulted in upregulation of Th1 immunity and worsening of
symptoms [205]. The investigators attributed this to their obser-
vations that TNF-a abrogates immune regulatory activities of
MSC. This study however was contradicted by several more re-
cent studies in which inhibition of arthritis progression, or even
regression of disease was observed. Mao et al. demonstrated
administration of rat MSC intravenously into DBA mice with
full-blow CIA resulted in regression of disease, which was
correlated with decreased production of TNF-a and IL-17 [206].
Gonzalez et al. administered ex vivo expanded human adipose-
derived MSC into the same animal model. Inhibition of disease
progression was observed, which correlated with increased Treg
numbers that were specific for CII. This study supports the previ-
ous principle discussed that an antigen-nonspecific tolerizing
event may contribute to development of antigen-specific sup-
pression [207]. In addition to immune modulation, it is possible
that cartilage tissue generated de novo from MSC possesses a de-
creased level of immunogenicity [208]. The overall anti-inflam-
matory/immune modulatory effects of MSC have been
demonstrated in a variety of settings including the mouse model
of multiple sclerosis [209,210], transplant rejection [129], diabe-
tes [211], the mouse model of SLE [212], and autoimmune enter-
opathy [131].
9. Case report

A 67 year old female with a history of severe pain and swelling
in her fingers, stiffness in hands and wrists especially upon rising
in the morning lasting approximately 10–15 min which began
approximately in August 2007. The patient self-medicated with
NSAIDS until seeking medical attention in April of 2008 as her
symptoms continued to worsen. Her symptoms at this time in-
cluded progressively worsening fatigue, excess sleeping, redness
of both hands, and now pain and swelling in both ankles and knees,
difficulty walking even short distances—limited by pain, and pro-
found fatigue. No fever, rash, neurologic symptoms were described.

Other than a surgical history of three caesarean sections, partial
colon resection due to ruptured diverticulum, and laparoscopic
cholecystectom her past medical history was unremarkable.

Physical exam revealed swollen, inflamed MCP’s and PIP’s in
both hands. Both wrists and 1st right MTP joint were also swollen
and inflamed. Range of motion of shoulder, neck and knees were
normal. No rheumatoid nodules, vasculitic lesions, ulnar deviation
of the MCP joints or swan deformity were noted. The rest of the
physical exam was unremarkable. Lab data revealed rheumatoid
factor level of 75 IU/ml, (normal range 0–39) and anti-cyclic citrul-
lated peptide antibody (CCP Ab) titer of >250, (normal range <25);
erythrocyte sedimentation ration (ESR) �4), antistreptoysin O Ab –
6.3: parvovirus H19 IgG elevated to 5.0 (range <0.9). CBC LFTs renal
function were all normal. Based on these findings a diagnosis of RA
was made. Patient was given 40 mg of Kenalog IM for immediate
pain management and was recommended to start treatment with
plaquenil and methothrexate but refused and self-medicated with
NSAIDS and Tylenol PRN for pain from April to August 2008.

The patient arrived at the ICM Clinic in Costa Rica on August 6,
2008 for stem cell therapy with autologous fat derived cells (stro-
mal vascular fraction). A liposuction was performed and 500 cc of
adipose tissue was obtained. The tissue was digested and the SVF
was isolated, tested for sterility and endotoxin and frozen in liquid
nitrogen [1]. Cells were prepared under the guidelines of Good Tis-
sue Practices 21 CFR 1271 as relates to sample screening and pro-
cessing. The patient was allowed to heal from the liposuction for
1 week. She then received a total of 53 million SVF cells in two suc-
cessive day intravenously infusions. No side effects from the infu-
sions were reported.

The patient reported considerable resolution of her joint pain
and stiffness after the second infusion and began walking normally
by the third day after treatment with no pain or symptoms. Phys-
ical exam at this time revealed no joints effusions in her hands,
wrists or feet. Rest of the physical exam was normal.

The patient continues to do well after the 15 months of stem
cell therapy, trains daily with a personal trainer without limita-
tions. Her last lab data was from September, 2009 and revealed a
decrease of a rheumatoid factor from 75 to 51.8 IU per ml and
CCP IgG from >250 to >100.
10. Future directions

Immunoregulatory circuits responsible for tolerance induction
are complex and multi-cellular. Based on the conditions of ‘‘natural
tolerance” in pregnancy, cancer, oral tolerance and ACAID,
common themes appear such as need for antigen presentation in
a ‘‘tolerogenic context”, the generation of Treg cells, and the main-
tenance of tolerance by constant suppression of inflammation.
Conceptually, a therapeutic approach for induction of tolerance
in a clinical situation would need to mimic events occurring in
one of the four conditions described. Clinically it is very difficult
to implement multiple acting therapies simultaneously, especially
when some of the components are novel. That said, in the
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development of a ‘‘tolerogenic protocol” it may be necessary to
consider agents that have a history of clinical use.

Creation of a tolerogenic protocol would require several compo-
nents: (a) a source of antigen; (b) a response to the antigen in the
form of an antigen presentation event; (c) manipulation of the re-
sponse so as to endow creation of a regulatory cell population; and
(d) maintenance/amplification of the regulatory cell population.
Using this framework, several possibilities emerge. Antigen load
may be administered exogenously, in the form of peptides or pro-
teins given intravenously [213,214], selected for tolerogenic epi-
topes [215,216], administered in the context of tolerogenic DC
[217] or administered orally [218]. Alternatively, the antigenic
source may be already existing in the host, but the host would have
to be manipulated in a manner so as to promote tolerogenesis. In
both situations the SVF population may be beneficial. Expansion
of Treg cells has been shown to occur in response to tolerogenic
peptides [219], during intravenous [220,221], and oral tolerance
[48]. According to our hypothesis, the concurrent administration
SVF would provide a ready-source of Tregs that could be expanded
in vivo by the tolerogenic regime. In the situation of tolerance to
endogenous antigens, the MSC component of the SVF may induce
a localized anti-inflammatory environment which would be pro-
tolerogenic. Manipulation of the antigen presenting event may be
performed using agents clinically available such as short course
of rapamycin [222], or DMARDs that inhibit DC maturation such
as hydroxychloroquine, which inhibits DC maturation by suppress-
ing TLR-8/9 activation [170], or lefluonamide [173]. Hypothetically,
the MSC and Treg content of SVF may also be capable of inhibiting
DC maturation, since both of these cell types have been reported to
possess this property [223–225]. The generation of Treg cells could
hypothetically be amplified by agents such as anti-CD3 monoclo-
nal antibody, which has been used with some success in autoim-
mune diabetes [226]. Other agents could include TNF-a blockers
that have previously been shown to restore Treg functional defi-
ciencies in RA patients through induction of FoxP3 expression
[107]. Administration of SVF may conceptually allow for amplifica-
tion of Tregs that would recognize the autoantigen being pre-
sented. Maintenance of the tolerogenic feedback loop could be
accomplished by providing regenerative cells, such as MSC in the
SVF, which would hypothetically result in suppression of ‘‘danger
signals” by reduction of inflammation.

In conclusion, we propose that SVF cells represent a novel, easy
to implement cell therapy that warrants investigation as a mono-
therapy or adjuvant to tolerance induction protocols. The fact that
autotransplantation of adipose tissue is part of standard cosmetic
surgery practice without adverse events [227,228], as well as our
pilot clinical data with SVF in multiple sclerosis [1], and RA, sup-
ports the notion of feasibility. Of the components of SVF, the
MSC fraction may provide direct immune regulatory activities, as
well as stimulation of tissue regeneration, thus decreasing ‘‘danger
signals” which inhibit tolerogenesis. CD34 cells found in SVF have
the potential to immune regulate, although further work in this
area is necessary. The recent finding of enhanced Treg numbers
and activity in adipose tissue suggests SVF may be a previously
unrecognized source of regulatory cells capable of in vivo expan-
sion subsequent to administration [9]. In a previous study we re-
ported treatment of three patients with multiple sclerosis with
autologous SVF, which underwent a profound clinical response
[1]. The cases presented here serve to expand on the ‘‘clinical sig-
nal” that an anti-inflammatory/disease modifying effect may be
achieved using the simple process of autologous SVF administra-
tion. While future studies are obviously needed to confirm these
preliminary observations, the establishment of feasibility and
administration protocols serves as a basis for future studies. An
interesting question presented by these studies is whether the adi-
pose resident Treg cells may also have deregulated function as
found in the periphery of patients with RA [229]. This is currently
being investigated.
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