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Animal studies have demonstrated that selective tropism of 
mesenchymal stem cells (MSC) for glioma may be used as a 
means of selective delivery of cytotoxic payloads. Endometrial 
Regenerative Cells (ERC) are a population of mesenchymal-like 
cells which possesse pluripotent differentiation capacity and is 
characterized by unique surface markers and growth factor produc-
tion. In this study we sought to determine whether unmanipulated 
ERC would alter the growth of glioma using the aggressive C6/
LacZ7 (C6) into Sprague Dawley rat model. ERC administra-
tion by intravenous (i.v.) or intratumoral (i.t.) showed significant 
inhibition of glioma: volume reduction of 49% after i.v. treatment 
(p < 0.05), and about 46% i.t. treatment (p < 0.05). Tumor reduc-
tion was associated with inhibition of angiogenesis and reduced 
numbers of CD133 positive cells in the incranial tumor. Despite 
the angiogenic potential of ERC in the hindlimb ischemia model, 
these data support a paradoxical tumor inhibitory activity of ERC. 
Further studies are needed to determine the qualitative differences 
between physiological angiogenesis, which seems to be supported 
by ERC and tumor angiogenesis which appeared to be inhibited.

Introduction

A number of studies support the notion that stem cell/progenitor 
cell administration is a potential way of suppressing tumor growth. 
Aboody et al. reported that subsequent to implantation of fetal-
derived neural stem cells (NSCs) into experimental intracranial 
glioma in adult rodents, the cells preferentially distribute throughout 
the tumor while not integrating into non-malignant tissue.1 This 
tropism of NSCs for glioma was used by others to as a delivery means 
of therapeutic genes to tumors.2,3 Other studies have demonstrated 
that mesenchymal stem cells (MSCs) can also selectively integrate into 
gliomas after intravascular or local delivery.4 Human skin-derived 
progenitor cells have also demonstrated selective trophism for malig-
nant tissue, and more interestingly, had the ability to inhibit tumor 
growth in an unmanipulated manner.5

Endometrial regenerative cells (ERCs) are a novel stem cell popu-
lation derived from menstrual blood expressing some but not all 
MSC markers, while lacking hematopoietic stem cell markers.6 ERC 
have been demonstrated to possess a degree of pluripotency, as well 
as express the embryonic stem cell marker Oct-4. In agreement with 
the notion that these cells are involved in the cyclical stimulation of 
endometrial angiogenesis, we previously reported ERC are potently 
proangiogenic in vitro and in vivo,7 which is supported by their high 
expression of MMP3 and MMP10.6 Previous studies have shown 
bone marrow derived cells, not exclusively endothelial precursors, 
but also monocytes and MSC, when administered to tumor bearing 
mice augment tumor angiogenesis and progression.8-10 Given that 
we are exploring the possibility of clinical translation of ERC, we 
sought to examine whether administration of these cells would affect 
growth of the aggressive C6/LacZ7 (C6) glioma tumor in rats. We 
found an inhibitory effect on tumor growth, accompanied by reduc-
tion in angiogenesis and numbers of CD133 positive tumor cells.

Results

ERC administration inhibits C6 tumor growth. In order to 
assess effects of ERC in an in vivo tumor model, 1 x 106 C6 cells 
were implanted intracranially on day zero in the right frontal 
lobe of Sprague Dawley rats. On day 2, ERC were administered 
intravenously (i.v.) or intratumorally (i.t.) at a concentration of 
3 x 106 or 1 x 106 cells per animal, respectively. Control animals 
were left untreated. Injections were uneventful with no observation 
of procedure associated adverse reactions. All animals were sacrificed 
on day 14. Tumor measurements were made based on a series of 
frozen sections and stained for b-gal expression (Fig. 1). A reduction 
of about 49% in overall tumor volume was observed after i.v ERC 
treatment (p < 0.05) and about 46% in animals receiving ERC i.t. 
(p < 0.05).

ERC administration associated with reduced neovascularization. 
Tumor blood vessels density was detected by counting of CD34 posi-
tive cells having endothelial morphology. As seen in Figure 2, lower 
numbers of blood vessels were observed in tumors from animals 
treated with ERC i.v. and i.t., as compared to controls. Specifically, 
we found an approximate 50% reduction in blood vessel density in 
i.v. treatment group (control group vs i.v group : 72 ± 18 vs. 35 ± 
11, p < 0.001) and approximately 37% reduction in the i.t. treated 
group (42 ± 9, p < 0.001).
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Reduction of CD133 positive C6 Cells 
in ERC treated animals. Tracking of putative 
glioma stem cells was feasible because of coex-
pression of CD133 on B-gal expressing cells. We 
identified a reduction of approximately 67% and 
33% in the number of CD133 positive cells in 
rats glioma tissues treated with ERC i.v. (9 ± 7, 
p < 0.01) and i.t.(18 ± 5, p < 0.05) respectively as 
compared to control group (27 ± 10).

Discussion

We have previously reported that ERC are 
a population of endometrial derived stem cells 
having ability to differentiate into numerous 
non-hematopoietic tissues.6 Given the ease of 
collection, ability for large scale expansion, and 
lack of need for tissue matching to achieve thera-
peutic effects, a clinical translation program was 
initiated to the goal of developing an “off the 
shelf therapy” for critical limb ischemia (CLI). 
As part of any such endeavor, it was critical to 
elucidate not only whether ERC can themselves 
transform into tumor tissue, which we published 
previously is not the case,7 but also whether they 
support the growth of existing tumors. This was 
a particular concern because of the potent angio-
genic activities of ERC in hindlimb ischemia 
models. We have previously reported that ERC 
administration did not accelerate tumor growth 
in a UVB induced model of skin cancer,7 and 
therefore we sought to extend these studies into 
a model of possible therapeutic relevance.

The intrinsic affinity of various progenitor 
cells to tumors has conventionally been explained 
as a result of injury-based chemoattraction.11,12 
In the similar manner to which bone marrow 
progenitors mobilize to injured myocardium 
after an infarct,13,14 or to injured brain tissue 
after a stroke,15,16 it is believed that endogenous 
stem cells are attracted by tumor induced tissue 
injury. Numerous factors secreted by tumors or 
adjacent tissue including SDF-1,8 tissue factor17 
and inflammatory mediators,18 can act as stem 
cell chemoattractants. For this reason, various 
groups have used neural progenitors, or other 
types of stem cells as vectors for delivery of therapeutic genes or prod-
ucts thereof. While the notion of using stem cells to target tumors 
is relatively accepted, a pressing question is whether unmanipulated 
stem cells inhibit or augment tumor progression.

Hypothetically, one would imagine that since stem cells secrete 
numerous growth factors and angiogenic factors, they would actually 
augment tumor growth. Conversely, given the natural tendency of 
numerous progenitor cells to differentiate, especially in the presence 
of inflammation,19 it may be possible that administration of progen-
itor cells can directly induce tumor differentiation. This concept 
is supported by reports of melanoma differentiating into neurons 
and skin cells after implantation into fertilized chicken eggs.20 

Other studies have demonstrated that MSC directly secrete tumor 
inhibitory factors.21,22 Before identification of MSC as a distinct cell 
type, reports exist of a bone marrow-derived non-cytotoxic tumor 
inhibitor of a low molecular weight, capable of inducing G0 arrest/
apoptosis of various tumor cells,23,24 as well as inhibiting tumor 
growth in vivo.25,26

In our experiments we observed a profound inhibition of 
C6 glioma cells in animals treated with ERC either i.v. or i.t.. 
Suppression of tumor growth was not associated with necrosis but 
characterize by lower number of new blood vessels as identified 
morphologically and by anti-CD34 staining. Given that conditioned 
media of ERC cultures stimulates HUVEC proliferation in vitro,7 

Figure 1. ERC Administration Inhibits C6 Tumors In Vivo. Sprague Dawley rats were implanted with 
1 million C6 tumor cells in the right frontal lobe and divided into three groups: Group (1) untreated 
controls (A); Group (2) i.v. administration of 3 million ERC on day 2 (B); and Group (3) 1 million 
ERC implanted locally at site of tumor implant on day 2 (C). Animals were sacrificed 14 days 
after tumor implantation and volume of X-gal positive tumors was quantified (D). Figures represent 
average of a total of 8 rats per group. *p < 0.05 according to t test.
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react with tumor-associated endothelium and 
mediate anticancer effects.32,33 Since ERC 
express various angiogenic factors, it is possible 
that immunity was induced to factors such as 
PDFG-BB or MMPs, which blocked activity 
of the endogenous tumor secreted molecules. 
While we can not conclusively rule out this 
possible explanation, several lines are reasoning 
suggest it is not likely. Firstly, i.v. admin-
istration of antigens is not likely to induce 
immunological responses, but may even cause 
intravenous tolerance.34 Secondly, inhibition 
of tumor growth was also observed by intratu-
moral injection of ERC, which was not likely 
to stimulate immune responses due to the local 
immune privilege associated with the CNS, 
as well as the tumor microenvironment.35 
Thirdly, we observed selective localization of 
labeled ERC associated with malignant tissue 
at the time of experiment termination (data 
not shown), thus making it unlikely that a 
potent anti-xenogeneic response was being 
mediated. Our previous study in the hindlimb 
ischemia model was conducted in immune 
competent BALB/c mice, and resulted in 
stimulation of angiogenesis despite a xenoge-
neic environment.7

In conclusion, we report that administra-
tion of ERC into a rat model of glioma seems 
to exert a therapeutic effect associated with 
inhibition of angiogenesis and reduction in 

tumor cells positive for the CD133 phenotype.

Materials and Methods

Cells. Menstrual blood was collected from a healthy female subject 
after menstrual blood flow initiated and ERC were cultured as previ-
ously described.6 The cells were then subcultured and passaged twice 
a week. We collected 3 x 106 every time for intravenous injection 
and 1 x 106 for intra-tumor injection, cells were washed 2 times with 
sterile PBS to remove FPS and store in PBS for injection (group 2 
and 3). C6/LacZ7 cells were purchased from ATCC (CRL-2303) 
and maintained according to the manufacturer’s instructions. Cells 
were cultured in complete DMEM media with 10% Fetal bovine 
serum; 0.1 mM Non-Essential Amino Acids (NEAA), 1% penicillin/
streptomycin, and 1% amphotericin B. Cells were incubated at 37°C 
in a fully humidified environment with 5% CO2. An aliquot of cells 
were stained with X-gal during passaging to ensure β-gal expression.

Animal models. Male Sprague Dawley rats, age 50–80 days, 
weighing 250–400 g (Charles River, Wilmington, MA), were used 
for all experiments. Before tumor implantation, rats were anesthe-
tized with ketamine hydrochloride/xylazine hydrochloride solution 
(Sigma). After rats were unconscious without pain reaction, they 
were placed in a surgical bed, with the head stabilized on the 
stereotactical frame (KOPF, Model 900 small Animal Stereotaxic 
Instrument), hair was shaved and cleaned with iodine solution, and 
then a sterile dress was used to cover the surgical area. The skin was 
incised to expose the skull. A 1mm diameter hole was drilled with a 
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Figure 2. ERC Administration Associated with Reduced Tumor Angiogenesis. Tumor vascularization 
was determined by staining with anti-CD34. Tumors in mice of Group 1 (control) exhibited vessels 
with irregular diameter and tortuous morphology (A). Less vessels were observed in Group 2 (ERC i.v.) 
(B), as well as in Group 3 (ERC i.t.) (C). Vessel density was quantified by scanning the CD34-stained 
sections at low magnification (40x) to determine areas with the highest number of microvessels as hot 
spots. Microvessels were counted at a magnification of 200x in four hot spots on each section and 
microvessel density was calculated as the average per viewing field (D) *(t-test, p < 0.001).

we speculated that the ERC may be inhibiting tumor growth and 
as a result less angiogenesis was present. An alternative explanation 
may be that qualitative differences in angiogenesis between tumors 
and ischemic non-malignant tissues, such that ERC selectively 
stimulate physiological but not pathological angiogenesis. Previously 
it was published that induction of immunity to angiogenesis related 
molecules leads to a selective inhibition of tumor angiogenesis but 
not angiogenesis in wound healing or the corpus luteum.27 Studies 
are currently underway to address these issues.

The inhibition of tumor growth could be associated with differ-
entiation of tumor stem cells. Tumor stem cells are known to express 
CD133 and reside in hypoxic niches of tumors.28,29 Others have 
demonstrated that MSC have preferential affinity towards hypoxic 
tissue.30 Patel et al. reported on an ERC-like population expressing 
similar markers and originating from the endometrium.31 His group 
demonstrated ERC-like cells express CXCR-4, the receptor for 
SDF-1, a factor secreted by hypoxic cells. Accordingly, it may be 
possible that the injected ERC were interacting/inhibition/differen-
tiating CD133 tumor stem cells. While we observed reduction in 
these cells, further studies are required to identify the significance of 
this inhibition.

The possibility exists that induction of immunity to ERC-derived 
proteins may cross-react with tumor expressed antigens and account 
for reduction in tumor volume. Studies immunizing mice with 
human endothelial cells have demonstrated induction of antibodies 
to various integrins on the xenogeneic endothelium, which cross 
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5 min in room temperature, rinse in PBS 
pH 7.4, 3 x 5 min, then sections were incu-
bated in blocking solution (4% non-fat milk 
and 2% normal horse serum) for 60 min, 
then incubated with CD34 (C-18 ) (1:200, 
goat poly-IgG, Santa Cruz), CD133 (k-18) 
(1:200, goat polyclonal IgG, Santa Cruz) 
(diluted in 2% milk) overnight at 4°C. The 
second day, sections were rinsed in PBS and 
apply biotinylated horse anti-goat antibody 
(Vector Lab) at 1:200 for 2 hours and then 
1% H2O2/PBS for 10 min, followed by 
the avidin-biotin complex (ABC) kit (Vector 
Laboratories) and visualized with diaminoben-
zidine (DAB). Sections were counterstained 
with hematoxylin, results were observed under 
the microscope and pictures stored in the 
computer for analysis. For paraffin sections, 
after deparaffinized and before blocking step, 
sections were putting in pressure cooker with 
Antigen Unmasking Solution (Vector H-3300, 
Vector lab) according to the manufacture’s 
instructions. For assessment of microvessel 
density: CD34-stained sections were scanned 
at low magnification (40x) to determine areas 
with the highest number of microvessels as hot 
spots. Microvessels were counted at a magnifi-
cation of 200x in 2 hot spots on each section 
and MVD was calculated as the average.

Statistical analysis. For comparing tumor 
volume and vessel density and CD133 positive cells in deferent 
group, data are present as means ± SD. Statistical analysis was carried 
out by the Student’s t test. Probability (p) values < 0.05 are consid-
ered as significant.
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