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Abstract 

The history of ascorbic acid (AA) and cancer has been marked with controversy. Clinical studies 

evaluating AA in cancer outcome continue to the present day. However, the wealth of data suggesting 

that AA may be highly beneficial in addressing cancer-associated inflammation, particularly progression 

to systemic inflammatory response syndrome (SIRS) and multi organ failure (MOF), has been largely 

overlooked.  Patients with advanced cancer are generally deficient in AA.  Once these patients develop 

septic symptoms, a further decrease in ascorbic acid levels occurs. Given the known role of ascorbate in: 

a) maintaining endothelial and suppression of inflammatory markers; b) protection from sepsis in animal 

models; and c) direct antineoplastic effects, we propose the use of ascorbate as an adjuvant to existing 

modalities in the treatment and prevention of cancer-associated sepsis. 

Personal Perspective 

Having worked in the area of cancer research for over a decade, the major focus of one of the authors’ 

investigations has been to develop therapeutic solutions by using siRNA to directly inhibit growth of 

tumors [1], and to stimulate tumor immunity using antigen-specific vaccines [2-4] or unorthodox 

immune-modulatory approaches [5-9]. Not until the author’s mother passed away from leukemia did he 

realize that, while many options have been developed in the treatment of cancers, relatively little can be 

performed at end-of-life. While life support technologies have significantly increased life span, the 

quality of life at end stages can be devastatingly poor. The author (whose training was in the basic 

research space) was surprised to realize that, for the majority of cancers, the patient is literally “waiting 

to die” while on various supportive measures.   

This led to the realization that there is a major need for supportive steps that: increase the quality of 

life, “do no harm”, and hold out the possibility (however slim) of restoring some measure of lost life 

functions back to patients. One intervention that caught the attention of the author while at his 

mother’s bedside was the practice of intravenous ascorbic acid (IV AA) administration [10, 11]. That 

specific intervention was supported by a report in the literature that intravenous administration of AA 

(10g twice and 4 g daily orally for one week)significantly increased the quality of life in end stage 

patients [12]. Could such an easy-to-implement therapy actually be of benefit to patients facing the 

same challenges of the deceased mother of the author?   

 When the author discussed this option with others, it became evident that the value of i.v. AA in cancer 

treatment is controversial. In the 1970s work by Cameron and Pauling demonstrated an approximate 4-

fold survival increase in terminal cancer patients administered  AA by i.v. and oral routes, compared to 

historical controls [13, 14], a finding that was also observed in the results of a trial published by Murata 

et al. [15]. Subsequent trials that did not use historical controls but had a double-blind placebo-

controlled design failed to find benefit [16, 17]. The controversy has continued with recent reports that 

oral AA administration, which was used in the trials that failed to demonstrate benefit, fails to increase 

plasma concentrations to a level estimated to be sufficient to induce tumor cytotoxicity [18-24]. 

Currently, i.v. AA is used extensively by “alternative medicine” practitioners in the USA (11,233 patients 

treated in 2006 and 8876 patients in 2008) [25], although the basis for this practice has not been 

adopted into mainstream medicine.  It is our belief that, in the practice of medicine, opinion should not 

hold greater weight than evidence - either a treatment has beneficial effects or it does not, and it is that 



consideration that must drive practice. We therefore sought, not to address the controversial area of 

whether AA shrinks tumors (which is currently being addressed in ongoing FDA approved trials [26-31]), 

but instead in an area that we feel has been highly under-explored: that is, suppression of inflammation 

in the cancer patient. In the context of cancer, inflammation may be seen as a continuum of possible 

degrees of severity ranging from low level, chronic inflammatory response to acute, highly severe 

inflammation. At the chronic end, low grade inflammation causes a variety of pathologies to the patient, 

perhaps most profound of which is cachexia [32-35], but also other effects such as poor post-surgical 

outcomes [36, 37]. At the other end of the spectrum is the acute inflammation observed in the systemic 

inflammatory response syndrome (SIRS),  a major cause of death of cancer patients and especially 

patients with hematological malignancies [38-40]. While we focus in this paper on SIRS and cancer, 

some of the concepts discussed are also applicable to chronic inflammatory conditions. 

What is SIRS?  

According to the accepted definition, Systemic Inflammatory Response Syndrome (SIRS) is a term 

characterizing an inflammatory syndrome caused by infectious or traumatic causes in which patients 

exhibit at least 2 of the following criteria: 1) Body temperature less than 36°C or greater than 38°C; 2) 

Heart rate greater than 90 beats per minute; 3)Tachypnea, with greater than 20 breaths per minute; or, 

an arterial partial pressure of carbon dioxide less than 4.3 kPa (32 mmHg: 4) White blood cell count less 

than 4000 cells/mm³ (4 x 109 cells/L) or greater than 12,000 cells/mm³ (12 x 109 cells/L); or the 

presence of greater than 10% immature neutrophils (band forms) [41].  SIRS is different than sepsis in 

that in sepsis an active infection is found [42]. These patients may progress to acute kidney or lung 

failure, shock, and multiple organ dysfunction syndrome. The term septic shock refers to conditions in 

which the patient has a systolic blood pressure of less than 90 mmHg despite sufficient fluid 

resuscitation and administration of vasopressors/inotropes.   

Predominant events in the progression to SIRS and subsequently to MOF include: a) systemic activation 

of inflammatory responses [43]; b) endothelial activation and initiation of the clotting cascade, 

associated with consumption of anticoagulants and fibrinolytic factors [44]; c) complement activation 

[45]; and d) organ failure and death.  These pathological events appear to be related to each other, for 

example, it is known that complement activation stimulates the pro-coagulant state [46]. In the cancer 

patient SIRS may be initiated by several factors.  Numerous patients receive immune suppressive 

chemo/radiotherapies that promote opportunistic infections [47, 48]. Additionally, given that 

approximately 40-70% of patients are cachectic, the low grade inflammation causing the cachexia could 

augment effects of additional bacterial/injury-induced inflammatory cascades [49]. Finally, tumors 

themselves, and through interaction with host factors, have been demonstrated to generate 

systemically-acting inflammatory mediators such as IL-1, IL-6, and TNF-alpha that may predispose to 

SIRS [50, 51]. 

Current SIRS treatments SIRS are primarily supportive. To date, the only drug to have elicited an effect 

on SIRS in Phase III double-blind, placebo-controlled trials has been Xigris (activated protein C (APC)) 

[52], which exerts its effects by activating endothelial cell-protecting mechanisms mediating protection 

against apoptosis, stimulation of barrier function through the angiopoietin/Tie-2 axis, and by reducing 

local clotting [53-55]. The basis of approval for Xigris has been questioned by some [56] and,  



additionally, it is often counter-indicated in oncology-associated sepsis (especially leukemias where 

bleeding is an issue of great concern). In fact, in the Phase III trials of Xigris, hematopoietic transplant 

patients were excluded [57]. Thus there is a great need for progress in the area of SIRS treatment and 

adjuvant approaches for agents such as Xigris.   

Endothelial Dysfunction of SIRS 

One of the main causes of death related to SIRS is dysfunction of the microcirculatory system, which in 

the most advanced stages is manifested as disseminated intravascular coagulation (DIC) [44]. 

Inflammatory mediators associated with SIRS, whether endotoxin or injury-related signals such as TLR 

agonists or HMGB-1, are all capable of activating endothelium systemically [58, 59].  Under physiological 

conditions, the endothelial response to such mediators is local and provides a useful mechanism for 

sequestering an infection and allowing immune attack.  In SIRS, the fact that the response is systemic 

causes disastrous consequences includingorgan failure. The characteristics of this endothelial response 

include: a) upregulation of tissue factor (TF) [60, 61] and suppression of endothelial inhibitors of 

coagulation such as protein C and the antithrombin system causing a pro-coagulant state [62]; b) 

increased expression of adhesion molecules which elicit, in turn, neutrophil extravasation [63]; c) 

decreased fibrinolytic capacity [64-66]; and d) increased vascular permeability/non-responsiveness to 

vaso-dilators and vasoconstrictors [67, 68]. Excellent detailed reviews of molecular signals associated 

with SIRS-induced endothelial dysfunction have been published[69-77] and one of the key factors 

implicated has been NF-kB [78]. Nuclear translocation of NF-kB is associated with endothelial 

upregulation of pro-thrombotic molecules and suppressed fibrinolysis [79-81].  In an elegant study, Song 

et al. inhibited NF-kB selectively in the endothelium by creation of transgenic mice transgenic expressing 

exogenous i-kappa B (the NF-kB inhibitor) specifically  in the vasculature. In contrast to wild-type 

animals, the endothelial cells of these transgenic mice experienced substantially reduced expression of 

tissue factor while retaining expression of endothelial protein C receptor and thrombomodulin 

subsequent to endotoxin challenge. Furthermore, expression of NF-B was associated with generation of 

TNF-alpha as a result of TACE activity [82].   

It is interesting that the beneficial effects of Xigris in SIRS appear to be associated with its ability to 

prevent the endothelial dysfunction [83] associated with suppression of proinflammatory chemokines 

[84], prevention of endothelial cell apoptosis [85], and increased endothelial fibrinolytic activity [86, 87]. 

Some of the protective activities of Xigris have been ascribed to its ability to suppress NF-kB activation in 

endothelial cells [88, 89].  

Ascorbic Acid Effects on Endothelium 

Several clinical studies have supported the possibility that AA mediates a beneficial effect on endothelial 

cells, especially in the context of chronic stress. Heitzer et al. [90] examined acetylcholine-evoked 

endothelium-dependent vaso-responsiveness in 10 chronic smokers and 10 healthy volunteers. While 

responsiveness was suppressed in smokers, administration of intra-arterial ascorbate was capable of 

augmenting reactivity: an augmentation evident only in the smokers. Endothelial stress induced in 17 

healthy volunteers by administration of L-methionine led to decreased responsiveness to hyperemic 

flow and increased homocysteine levels.  Oral AA (1 g/day) restored endothelial responsiveness [91]. 

Restoration of endothelial responsiveness by AA has also been reported in patients with insulin-



dependent [92] and independent diabetes [93], as well as chronic hypertension [94]. In these studies AA 

was administered intraarterially or intravenously, and the authors proposed the mechanism of action to 

be increased nitric oxide (NO) as a result of AA protecting it from degradation by reactive oxygen species 

(ROS). 

A closer look at the literature suggests that there are several general mechanisms by which AA may 

exert endothelial protective properties. The importance of basal production of NO in endothelial 

function comes from its role as a vasodilator, and an inhibitor of platelet aggregation [95, 96].  High 

concentrations of NO are pathological in SIRS due to induction of vascular leakage [97]. However, lack of 

NO is also pathological because it causes loss of microvascular circulation and endothelial 

responsiveness [98, 99]. Although there are exceptions, the general concept is that inducible nitric oxide 

synthase (iNOS) and neuronal nitric oxide synthase (nNOS) are associated with sepsis-induced 

pathologies, whereas eNOS is associated with protective benefits [100].  It is important to note that, 

while iNOS expression occurs in almost all major cells of the body in the context of inflammation, eNOS 

is constitutively expressed by the endothelium. AA administration decreases iNOS in the context of 

inflammation [101, 102], but appears to increase eNOS [103]. Thus, AA appears to increase local NO 

concentrations through: a) prevention of ROS-mediated NO inactivation [104, 105]; b) increased activity 

of endothelial-specific nitric oxide synthase (eNOS) [106], possibly mediated by augmenting 

bioavailability of tetrahydrobiopterin [107-112], a co-factor of eNOS [113]; and c) induction of NO 

release from plasma-bound S-nitrosothiols [103]. 

In addition to deregulation of NO, numerous other endothelial changes occur during SIRS, including 

endothelial cell apoptosis, upregulation of adhesion molecules, and the procoagulant state [114].  AA 

has been reported to be active in modulating each of these factors.  Rossig et al. reported that in vitro 

administration of AA led to reduction of TNF-alpha induced endothelial cell apoptosis [109].  The effect 

was mediated in part through suppression of the mitochondria-initiated apoptotic pathway as 

evidenced by reduced caspase-9 activation and cytochrome c release.  To extend their study into the 

clinical realm, the investigators prospectively randomized 34 patients with NYHA class III and IV heart 

failure to receive AA or placebo treatment. AA treatment (2.5 g administered intravenously and 3 days 

of 4 g per day oral AA) Resulted in reduction in circulating apoptotic endothelial cells in the treated but 

not placebo control group [115]. Various mechanisms for inhibition of endothelial cell apoptosis by AA 

have been proposed including upregulation of the anti-apoptotic protein bcl-2 [116] and the Rb protein, 

suppression of p53 [117], and increasing numbers of newly formed endothelial progenitor cells [118].  

AA has been demonstrated to reduce endothelial cell expression of the adhesion molecule ICAM-1 in 

response to TNF-alpha in vitro in human umbilical vein endothelial (HUVEC) cells (HUVEC) [119].  By 

reducing adhesion molecule expression, AA suppresses systemic neutrophil extravasation during sepsis, 

especially in the lung [120]. Other endothelial effects of AA include suppression of tissue factor 

upregulation in response to inflammatory stimuli [121], and effect expected to prevent the 

hypercoaguable state.  Furthermore, ascorbate supplementation has been directly implicated in 

suppressing endothelial permeability in the face of inflammatory stimuli [122-124], which would 

hypothetically reduce vascular leakage. Given the importance of NF-kappa B signaling in coordinating 

endothelial inflammatory changes [79-81], it is important to note that AA at pharmacologically 



attainable concentrations has been demonstrated to specifically inhibit this transcription factor on 

endothelial cells [125]. Mechanistically, several pathways of inhibition have been identified including 

reduction of i-kappa B phosphorylation and subsequent degradation [126], and suppression of 

activation of the upstream p38 MAPK pathway [127]. In vivo data in support of eventual use in 

humanshas been reported showing that administration of 1 g per day AA in hypercholesterolemic pigs 

results in suppression of endothelial NF-kappa B activity, as well as increased eNOS, NO, and endothelial 

function [128]. In another porcine study, renal stenosis was combined with a high cholesterol diet to 

mimic renovascular disease.  AA administered i.v. resulted in suppression of NF-kappa B activation in the 

endothelium, an effect associated with improved vascular function [129]. 

An important factor in reports of clinical studies of AA is the difference in effects seen when different 

routes of administration are employed.  Supplementation with oral AA appears to have rather minor 

effects, perhaps due to the rate-limiting uptake of transporters found in the gut.  Indeed, maximal 

absorption of AA appears to be achieved with a single 200 mg dose [130]. Higher doses produce gut 

discomfort and diarrhea because of effects of ascorbate accumulation in the intestinal lumen [131]. This 

is why some studies use parenteral administration. An example of the superior biological activity of 

parenteral versus oral was seen in a study administering AA to sedentary men. Parenteral but not oral 

administration was capable of augmenting endothelial responsiveness as assessed by a flow-mediated 

dilation assay [132].   

Cancer Patients are Deficient in Ascorbic Acid  

The general activity of AA as an anti-oxidant implies that conditions associated with chronic 

inflammation and oxidative stress would lead to its depletion.  As reviewed by McGregor and Biesalski 

[133], numerous inflammatory conditions including gastritis [134], diabetes [134, 135], pancreatitis 

[136], pneumonia [137], osteoporosis [138], rheumatoid arthritis [139], are all associated with marked 

reduction in plasma AA levels as compared to healthy controls.  Within the context of this discussion, 

profound reduction of AA is observed in cancer patients [140-146], SIRS patients [147], and ICU patients 

[134].   

Some studies have demonstrated correlation between plasma AA and survival. Mayland et al. [141] 

measured plasma AA in 50 end-stage cancer patients in a hospice setting. A correlation between 

deficiency in AA, decreased survival, and higher expression of the inflammatory marker CRP was noted.  

More recently, a correlation between tumor aggressiveness and low AA content has been made [148]. 

Kuiper et al. found that the proangiogenic transcription factor HIF-1 alpha is negatively correlated with 

tumor AA content.  Correlations where also made between low AA content, high VEGF, and levels of the 

anti-apoptotic protein bcl-2.   

Cancer patients are known to exhibit a general state of chronic inflammation which, as stated above, is 

related to the tumor itself and the interaction of host factors with the tumor. Elevation in the level o f 

classical inflammatory markers such as fibrinogen [149-155], CRP [156-160], erythrocyte sedimentation 

rate [161], ferritin [162-165], neopterin [166-168], homocysteine [169, 170], IL-6 [161, 171], and free 

radical stress [172-175] have been well-documented in cancer patients, with numerous studies 

demonstrating that elevation is associated with poor survival.   



The possibility that inflammation itself reduces plasma AA was shown by Fain et al. [176], who examined 

184 hospitalized patients and observed that 47.3% suffered from hypovitaminosis C  as defined as either 

depletion (i.e., serum AA levels < 5 mg/l) or deficiency (i.e., serum AA levels < 2 mg/l). Interestingly, 

patients with an activated acute phase response, as defined by erythrocyte sedimentation rate above 20 

mm and an increase in acute phase reactants (CRP >10 mg/l and/or fibrinogen>4 g/l) had lower serum 

AA levels. Also associated with decreased serum AA levels was reduction in hemoglobin and albumin. A 

Japanese population study of 778 men and 1404 women, aged 40-69 years, demonstrated a negative 

correlation between plasma AA content and CRP [177]. In an interventional study, Block et al. examined 

396 healthy nonsmokers randomized to receive either 1000 mg/day vitamin C, 800 IU/day vitamin E, or 

placebo, for 2 months.  A statistically significant decrease in plasma CRP levels was found only in the 

group receiving AA [178]. 

While a study by Mayland et al. demonstrated that, in 50 patients with advanced malignancies of 

various types, a correlation between high CRP levels and AA deficiency existed [179], to our knowledge 

no interventional studies in cancer patients have been performed to assess the capacity of AA 

administered i.v. to inhibit chronic inflammation. In the absence of such studies, we looked at reports of 

AA inhibition ofs inflammatory markers in the context of other diseases to determine whether a 

rationale may exist for its use in cancer. Several such supporting studies exist. Administration of IV AA 

has been shown to decrease CRP levels in smokers [180]. Oral AA supplementation decreased CRP levels 

in a trial of 44 patients suffering from atrial fibrillation after cardioversion [181]. In a study of 12 healthy 

volunteers, it was shown that i.v. AA inhibited endothelin-induced IL-6 production [182]. In a study of 

1463 coronary artery disease patients, a negative correlation between neopterin (a catabolic product of 

GTP indicative of immune activation) and AA concentration was noted [183]. Given that there are, at 

present, numerous trials being conducted using i.v. AA in the treatment of cancer [26-31], it is highly 

unfortunate that none of them are assessing inflammatory markers or other potential mechanisms of 

action. This may, to some degree, be detrimental to future study of AA in cancer treatment: if poor 

tumor regression data is generated, replication of these trials with inclusion of sensitive inflammatory 

marker endpoints may never occur. 

SIRS patients are deficient in AA 

The progression of SIRS into MOF is perhaps one of the most inflammation-driven disease pathologies. If 

the overall hypothesis that AA is consumed by inflammation is correct, these patients should be highly 

deficient. This appears to be the case: several studies have demonstrated severe deficiency in AA in 

patients with sepsis and septic shock compared to healthy volunteers.  Doise et al. examined 37 patients 

with septic shock, 19 patients with severe sepsis, and 6 healthy volunteers over the period of 10 days. A 

significant deficiency of AA was observed compared to controls, and blood AA levels continued to 

decline while the patients were in the ICU. No difference between the deficiency in septic shock and 

severe sepsis was noted [184]. The association ofAA deficiency with poor outcomes was further 

strengthened in a study of 16 ICU patients in which a statistically significant decrease in AA was found in 

patients progressing to MOF [185].  Indeed, septic patients have been demonstrated to exhibit a much 

higher rate of ascorbate consumption compared to healthy volunteers, based on studies in which 



predefined doses of AA were administered and in vivo degradation and disappearance was assessed 

[186]. 

Animal models suggest a critical role for AA in protecting from/inhibiting the septic process. In an 

elegant study, mice deficient for ascorbic acid synthesis (i.e., deficient in L-gulono-gamma-lactone 

oxidase) were depleted of exogenous ascorbate by feeding on an ascorbate-free diet and challenge with 

the pathogen Klebsiella pneumonia.  Mortality was 3-fold higher in ascorbate-deficient animals 

compared to controls, which received a standard ascorbate-containing diet [187].  Given that cancer 

patients are generally deficient in AA, these findings may suggest the importance of maintaining at least 

normal AA levels to prevent from onset of SIRS [140-146]. Supplementation with AA has been 

demonstrated to protect against sepsis-associated death. Using a “feces injection into the peritoneum” 

model of sepsis, i.v. injection of 10 mg/kg AA resulted in 50% survival, in contrast to a 19% survival in 

animals receiving saline [98].  Supplementation with AA improved outcome in sepsis-associated 

hypoglycemia [188], microcirculatory abnormalities [189],  and blunted endothelial responsiveness [101, 

102, 190] in animal models. 

From a clinical perspective, Crimi et al. reported a prospective randomized study in which vitamins C 

(500 mg/d) and E (400 IU/d) where administered via enteral tube to a group of 105 critically ill patients, 

whereas a control group of 111 patients received a isocaloric formula without supplementation with 

these vitamins. At patient follow-up, reduced TBARS and isoprostanes (markers of oxidative stress) were 

observed in the treated group. In addition,  improved survival at 28 days of treatment was reported: 

54.3% in the antioxidant group and 32.5% in the regular-feeding group (p <0.05) [191].  Nathens et al. 

performed a larger study of 595 critically ill surgical patients where the majority suffered from trauma. 

AA and vitamin E where administered i.v. 3 times per day (1000 mg per injection and 1000 IU enterally, 

respectively).  Reductions in the time of hospital stay, pulmonary mortality, and need for mechanical 

ventilation was observed in the treated group. Furthermore, MOF incidence was reduced in the anti-

oxidant supplemented group [192]. In a study of the effect of AA alone in treatment of burn patients 

with > 30% of their total body surface area affected, patients were given AA i.v. (66 mg/kg/hr for 24 

hours, n=19) or received only standard care (controls, n=18). AA treatment resulted in statistically 

significant reductions in 24 hr total fluid infusion volume, fluid retention (indicative of vascular leakage), 

and MDA. Perhaps most striking was the decrease in the need for mechanical ventilation: the treated 

group required an average of 12.1 ± 8.8 days, while the control group required 21.3 ± 15.6 days [193].   

Thus it appears that cancer patients generally have a deficiency in AA which may predispose to SIRS and 

subsequent MOF, and patients with other diseases exhibit symptom severity inversely associated with 

AA levels. Patients who do develop SIRS and MOF have even greater depletion of AA and, as a result, 

various changes in the endothelium occur which exacerbate progression to mortality. Thus, there is 

some rationale for use of AA in cancer patients to prevent/treat SIRS. There is an additional possible 

benefit in that AA may actually inhibit cancer initiation and growth. Without providing an exhaustive 

review of this controversial subject, we will touch upon some work that has been performed in this area. 

 



AA Effects in Cancer 

The state of AA deficiency in cancer patients, whether or not as a result of inflammation, suggests that 

supplementation may yield benefit in quality of life. Indeed, this was one of the main findings that 

stimulated us to write this review [12]. Improvements in quality of life were also noted in the early 

studies of Murata et al. [15] and Cameron [11].  But, in addition to this endpoint, there appears to be a 

growing number of studies suggesting direct anti-cancer effects via generation of free radicals locally at 

tumor sites [21]. In vitro studies on a variety of cancer cells including neuroblastoma [194], bladder 

cancer [195], pancreatic cancer [196], mesothelioma [197], and hepatoma [198], have demonstrated 

cytotoxic effects at pharmacologically-achievable concentrations.  Enhancement of cytotoxicity of 

docetaxel, epirubicin, irinotecan, and 5-FU to a battery of tumor cell lines by AA was demonstrated in 

vitro [199]. In vivo studies have also supported the potential anticancer effects of AA.  For example, 

Pollard et al. used the rat PAIII androgen-independent syngeneic prostate cancer cell line to induce 

tumors in Lobund-Wistar rats. Daily intraperitoneal administration of AA for 30 days (with evaluation at 

day 40) revealed significant inhibition of tumor growth and reduction in pulmonary and lymphatic 

metastasis [200]. Levine’s group reported successful in vivo inhibition of human xenografted glioma, 

overian, and neuroblastoma cells in immune-deficient animals by administration of AA.  Interestingly, 

control fibroblasts were not affected [23]. Clinical reports of remission induced by i.v. AA have been 

published [201]. However, as mentioned above, formal trials are still ongoing.  Table 1 summarizes 

previous trials. 

In addition to direct cytotoxicity of AA on tumor cells, inhibition of angiogenesis may be another 

mechanism of action. It has been reported that AA inhibits HUVEC proliferation in vitro [202] and 

suppresses neovascularization in the chorionic allontoic membrane assay [203]. We recently reported 

that in vivo administration of AA suppresses vascular cord formation in mouse models [204]. Supporting 

this, Yeom et al. demonstrated that parenteral administration of AA in the S-180 sarcoma cell model 

leads to reduced tumor growth, which was associated with suppression of angiogenesis and reduced 

expression of the pro-angiogenic factors bFGF, VEGF, and MMP-2 [205]. Recent studies suggest that AA 

suppresses activation of the hypoxia-inducible factor (HIF)-1, which is a critical transcription factor that 

stimulates tumor angiogenesis [206-208]. The clinical relevance of this has been demonstrated in a 

study showing that endometrial cancer patients with reduced tumor ascorbate levels have higher levels 

of  active HIF-1 and a more aggressive phenotype [148]. 

Thus the possibility exists that administration of AA for treatment of tumor inflammation-mediated 

pathologies may also cause an antitumor effect. Whether this effect is mediated by direct tumor 

cytotoxicity or inhibition of angiogenesis remains to be determined. Unfortunately, none of the ongoing 

trials of AA in cancer patients seek to address this issue [26-31].  

Areas needing study: AA and Immunity 

Despite numerous claims in the popular media (and even on labels on over-the-counter vitamin 

packaging), AA stimulation of immune function to reduce tumor initiation and growth is not clear-cut. 

This is partly because ROS are involved in numerous signaling events in immune cells [209]. For example, 

it is known that T cell receptor signaling induces an intracellular flux of ROS which is necessary for T cell 

activation [210]. There are also numerous studies demonstrating that ascorbic acid, under certain 



conditions, can actually inhibit immunity.  For example, high dose ascorbate inhibits T cell and B cell 

proliferative responses as well as IL-2 secretion in vitro [211, 212], and NK cytotoxic activity [213]. In 

addition, AA has been demonstrated to inhibit T cell activation of dendritic cells by encouraging them to 

remain in an immature state, in part through inhibition of NF-kappa B [214]. 

It is possible, although not formally tested, that the immune stimulatory effects of AA are actually 

observed in the context of background immune suppression or in situations of AA deficiency, both of 

which are well-known in the cancer and SIRS patient. Cleavage of the T cell receptor (TCR) zeta chain is a 

common occurrence in cancer [215-219] and SIRS patients [220, 221]. The zeta chain is an important 

functional factor in  T cell and NK cell activation, and is the most highly expressed of the 

immunoreceptor tyrosine-based activation motifs (ITAMs) on T and NK cells [222].  At the cellular level, 

cleavage of the zeta chain is associated with loss of T/NK cell function and spontaneous apoptosis [223-

225] and, in  the clinic, it is associated with poor prognosis [226-231].   

Since loss of the TCR zeta chain is found in other inflammatory conditions ranging from hemodialysis 

[232, 233], to autoimmunity [234-237], to heart disease [238], the possibility that inflammatory 

mediators such as ROS cause TCR zeta downregulation has been suggested. Circumstantial evidence 

comes from studies correlating presence of inflammatory cells such as tumor-associated macrophages 

with suppression of zeta chain expression [239]. Myeloid suppressor cells (which are known to produce 

high concentrations of ROS [240-242]) have also been demonstrated to induce reduction of TCR zeta 

chain in cancer [243], and after trauma [244]. Administration of anti-oxidants has been shown to reverse 

TCR zeta chain cleavage in tissue culture [245, 246].Therefore, from the T cell side of immunity, an 

argument could be made that intravenous ascorbic acid may upregulate immunity by blocking zeta chain 

downregulation in the context of cancer and acute inflammation. 

While it is known that AA functions as an antioxidant in numerous biological conditions, as well as 

reduces inflammatory markers, the possibility that AA actually increases immune function in cancer 

patients has never been formally tested.  This is an area that in our opinion cries out for further studies. 

Conclusion 

AA administered intravenously has a long and controversial history in relation to reducing tumors in 

patients. This has impeded research into other potential benefits of this therapy in cancer patients such 

as reduction of inflammation, improvement of quality of life, and reduction ofSIRS initiation and 

progression to MOF.  While ongoing clinical trials of i.v. AA for cancer may or may not meet the bar to 

grant this modality a place amongst the recognized chemotherapeutic agents, it is critical that we collect 

as much biological data as possible, given the possibility of this agent to be a wonderful adjuvant 

therapy.   
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TABLE 1: Ascorbic Acid Cancer Trials 

 

  

 

Condition Number of 

Patients 

Dose/Route Finding Ref 

Mixture of solid 

tumors at different 

stages 

49 Intravenous for 10 days 

10 g and subsequently 

daily oral 10 g/day 

17 pts no response,  

10 pts minimal response, 11 pts growth 

retardation, 2 pts cytostasis, 5 pts tumor 

regression, 4 pts tumor hemorrhage/necrosis 

11 

Terminal cancer 

patients 

39 Intravenous 10 g 

vitamin C twice with a 

3-day interval and an 

oral intake of 4 g 

vitamin C daily for a 

week 

Health score improved from 36+/-18 to 55+/-

16 (p=0.001). Significantly higher scores for 

physical, role, emotional, and cognitive 

function (p<0.05). In symptom scale, the 

patients reported significantly lower scores 

for fatigue, nausea/vomiting, pain, and 

appetite loss (p<0.005). 

12 

Terminal cancer 

patients 

100 cancer pts 

treated as 

compared to 

1000 controls.  

50 of the 

treated pts 

were in the 

publication 

described in ref 

11. 

Intravenous for 10 days 

10 g and subsequently 

daily oral 10 g/day 

Mean survival time > 4.2 times as great for 

the ascorbate subjects (more than 210 days) 

as for the controls (50 days). Survival-time 

curves indicate that deaths occur for about 

90% of the ascorbate-treated patients at one-

third the rate for the controls and that the 

other 10% have a much greater survival time, 

averaging more than 20 times that for the 

controls. 

13 

Terminal cancer 

patients 

99 in one 

hospital and 31 

in another 

hospital 

30g/day intravenously Hospital #1: Survival of 43 days for 44 low-

ascorbate patients and 246 days for 55 high-

ascorbate patients. 

Hospital #2: 48 days for 19 control patients 

and 115 days for 6 high-ascorbate patients. 

15 

Terminal cancer 

patients 

60 AA, 63 

placebo 

controlled 

10 g/day oral The two groups showed no appreciable 

difference in changes in symptoms, 

performance status, appetite or weight. The 

median survival for all patients was about 

seven weeks, and the survival curves 

essentially overlapped. 

16 

Advanced colorectal 

cancer 

50 AA, 50 

control 

10 g/day oral AA treatment had advantage over placebo 

with regard to either the interval between the 

beginning of treatment and disease 

progression or patient survival. Among 

patients with measurable disease, none had 

objective improvement. 

17 

Renal metastatic, B 

cell lymphoma, 

Bladder cancer 

3 Cases 50-100 g intravenously, 

various regimens 

Tumor regression and unexpectedly long 

survival. 
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